Histone methyltransferase Ash1L mediates activity-dependent repression of neurexin-1α

نویسندگان

  • Τao Zhu
  • Chen Liang
  • Dongdong Li
  • Miaomiao Tian
  • Sanxiong Liu
  • Guanjun Gao
  • Ji-Song Guan
چکیده

Activity-dependent transcription is critical for the regulation of long-term synaptic plasticity and plastic rewiring in the brain. Here, we report that the transcription of neurexin1α (nrxn1α), a presynaptic adhesion molecule for synaptic formation, is regulated by transient neuronal activation. We showed that 10 minutes of firing at 50 Hz in neurons repressed the expression of nrxn1α for 24 hours in a primary cortical neuron culture through a transcriptional repression mechanism. By performing a screening assay using a synthetic zinc finger protein (ZFP) to pull down the proteins enriched near the nrxn1α promoter region in vivo, we identified that Ash1L, a histone methyltransferase, is enriched in the nrxn1α promoter. Neuronal activity triggered binding of Ash1L to the promoter and enriched the histone marker H3K36me2 at the nrxn1α promoter region. Knockout of Ash1L in mice completely abolished the activity-dependent repression of nrxn1α. Taken together, our results reveal that a novel process of activity-dependent transcriptional repression exists in neurons and that Ash1L mediates the long-term repression of nrxn1α, thus implicating an important role for epigenetic modification in brain functioning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nuclear cyclin D1/CDK4 kinase regulates CUL4 expression and triggers neoplastic growth via activation of the PRMT5 methyltransferase.

Cyclin D1 elicits transcriptional effects through inactivation of the retinoblastoma protein and direct association with transcriptional regulators. The current work reveals a molecular relationship between cyclin D1/CDK4 kinase and protein arginine methyltransferase 5 (PRMT5), an enzyme associated with histone methylation and transcriptional repression. Primary tumors of a mouse lymphoma model...

متن کامل

ASH1L Links Histone H3 Lysine 36 Dimethylation to MLL Leukemia.

UNLABELLED Numerous studies in multiple systems support that histone H3 lysine 36 dimethylation (H3K36me2) is associated with transcriptional activation; however, the underlying mechanisms are not well defined. Here, we show that the H3K36me2 chromatin mark written by the ASH1L histone methyltransferase is preferentially bound in vivo by LEDGF, a mixed-lineage leukemia (MLL)-associated protein ...

متن کامل

Set2 is a nucleosomal histone H3-selective methyltransferase that mediates transcriptional repression.

Recent studies of histone methylation have yielded fundamental new insights pertaining to the role of this modification in gene activation as well as in gene silencing. While a number of methylation sites are known to occur on histones, only limited information exists regarding the relevant enzymes that mediate these methylation events. We thus sought to identify native histone methyltransferas...

متن کامل

Mdm2 as a chromatin modifier

Mdm2 is the key negative regulator of the tumour suppressor p53, making it an attractive target for anti-cancer drug design. We recently identified a new role of Mdm2 in gene repression through its direct interaction with several proteins of the polycomb group (PcG) family. PcG proteins form polycomb repressive complexes PRC1 and PRC2. PRC2 (via EZH2) mediates histone 3 lysine 27 (H3K27) trimet...

متن کامل

Ash1l and lnc-Smad3 coordinate Smad3 locus accessibility to modulate iTreg polarization and T cell autoimmunity

Regulatory T (Treg) cells are important for the maintenance of immune homoeostasis and prevention of autoimmune diseases. Epigenetic modifications have been reported to modulate autoimmunity by altering Treg cell fate. Here we show that the H3K4 methyltransferase Ash1l facilitates TGF-β-induced Treg cell polarization in vitro and protects mice from T cell-mediated colitis in vivo. Ash1l upregul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016